
cMix Tagging Attack
Analysis and Mitigation

Benjamin Wenger

Attack Description and Previous Work
As described in section 5.2 of the cMix academic paper1, a node can perform a
tagging attack by multiplying in an uncommitted factor to a message and then
seeing which message comes out correctly when inverting the factor.

Furthermore, as described in section 5.2, with cMix in its base construction, it is
possible for the last node to execute this attack and undo the inversion before
delivering the messages, doing so without a trace. In the paper, they propose
delaying the final unwrapping stage of cmix (from this point on referred to as group
open) until after the last node provides a commitment on the final outputs in order
to ensure the attack cannot be carried out. Group Open does not ensure the tagging
attack cannot successfully break privacy, but does ensure if the last node in the team
is part of the attack they are unable to make the attack undetectable. Further
optimizations on this solution can be found in the Appendix.

In the paper, the primary solution presented is in sections 5.1, 5.2, and 5.3. The
solution can be summarized as an interactive commitment scheme and an opening
verification process for those commitments when faults are detected, which allows a
third party to conclusively determine which node has executed the attack. This
solution does not ensure the attack cannot be executed, but is able to create an
effective deterrent to the attack. It is the gold standard solution but is extremely
difficult to implement due to its interaction with clients, and consensus and the
blockchain to enforce requests in a byzantine safe manner.

Alternative solution: Indistinguishability of
Outputs
A fundamental facet of the problem is the requirement that the attacker can
distinguish when messages are output correctly. If a valid message is
indistinguishable from an invalid message, then it will be impossible to detect when

1 https://eprint.iacr.org/2016/008.pdf

https://eprint.iacr.org/2016/008.pdf

the inversion of the invalid factor un-corrupts a message. Given that message
contents are end to end encrypted, the sole identifying component of outputs
messages is the User ID.

A solution therefore could be to have ephemeral, constantly changing IDs. If
identities are never reused, then they cannot be used to detect proper decryption.
Such solutions are indeed possible, but create significant overhead for message
pickup.

Indistinguishability of outputs can be achieved through another mechanism -
through forced ID collision. By creating reception IDs in a dense space where the
number of available IDs is roughly on par with the number of IDs in use, collisions
between random valid IDs and known valid IDs can be made to not just be common,
but overwhelmingly likely. As a result, on executing a tagging attack it will be likely
that attackers will be unable to identify their tagged message.

Adversarial Model
● It is assumed that only the attacker is capable of executing the attack when

they are a member of a team and only for messages which are processed by
that team

● It is assumed that the attacker knows the recipients addresses for all received
messages in all rounds. 2

● It is assumed that the attacker knows all sender ID <-> IP address relationships
for each round and all recipient ID <-> IP address relationships each round.
This can be derived from the global adversarial model or the standard BFT
model used by the consensus portion of the network

● Clients have private keys and data which is not known by the Adversary and
can share this data between each other securely

Solution
The solution is to restrict the address space in which messages are received within
the network.

Assuming a number of active recipients R, the number of addresses the network
maintains available (A) will be set at:

𝐴 = 2𝑠 𝑠 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔
2
𝑅)

2 This can be gleaned from gossips used to disseminate data for rate limiting account and
delivering recipient data to allow a client to learn where they have messages available from
any gateway

This will ensure the number of available addresses will always be fewer than the
number of recipients, ensuring a high likelihood of collisions which obfuscate tagged
messages.

This equation is chosen because it heavily simplifies the address creation process to
have the space bit aligned (an example is described in the appendix). The floor is
used (instead of a ceiling) because the system operates more securely when the
number of addresses is less than R, rather than greater.

Analysis
These addresses will not be statically assigned but will rotate at a set period p.
Rotation will be at a random phase only known by clients participating in the
sending and receiving. As a result, it will not be possible to get an exact list of
currently active addresses, and an attacker will be required to build a list of
potentially active recipient addresses. This will correlate to the number of addresses
selected by recipients within the set (Rp)

𝑅
𝑝
 = 2𝑅

When an attacker adds their factor, the resulting address can be considered to be
randomly chosen. As a result, the probability of a collision is simply the probability
that at least one other recipient selected the address.

Due to the fact that selection of address is effectively random, the probability that a
single recipient selects the address is:

𝑝
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑔𝑙𝑒

= 1/𝐴

And the probability that the address is not selected is:

𝑝
𝑛𝑜 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑔𝑙𝑒

= 1 − 𝑝
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑔𝑙𝑒

= 1 − 1/𝐴

Given that the probability of at least one selection is the inverse of the probability of
no selection, it can be computed that the probability of selection as follows:

𝑝
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

= 1 − 𝑝
𝑛𝑜 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

= 1 − 𝑝
𝑛𝑜 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑛𝑔𝑙𝑒()𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 1 − (1 − 1/𝐴)

𝑅
𝑝

Which can be simplified into terms of R

𝑝
𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

= 1 − (1 − 1/ 2
𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔

2
𝑅)())

2𝑅

From this equation it can be seen that it only depends on R.

Calculation
By graphing the output, it can be seen that the probability repeats every 2n < R < 2n+1 .

Therefore we can just analyze a single region to understand the probabilities. The
probabilities in a single region can be calculated with the the following python code:

import math

//check values between 2^10 and 2^11
i = 1025

while i<2047:
a = 2**math.floor(math.log(i)/math.log(2))
pSingle = 1-1/a
pAdv = 1-pow(pSingle,2*i)
print(f'{i}, {pAdv}')
i= i+10

This shows that the collision rate is between 86.5% and 98.2%, meaning that when a
tagging attack is completed, the attacker is unlikely to be able to detect the
message they tagged.

Group Open
This approach provides a defense in depth that is complementary to the Group
Open. While group open prevents the attack, ID collisions prevent the attacker from
even finding their tagged message with enough certainty to invert the factor
without having a greater chance of simply corrupting more messages. While this
does not remove the potential need for group agreement on the output for Praxxis
consensus it minimizes the impact of a new and novel tagging attack that bypasses
group open.

Analysis of a Tagging Attack in this Environment
WIth this mitigation in place, a tagging attack can still occur, but it becomes much
more difficult. In general the attacker’s approach will be to execute the tagging
attack many-many times and use the imperfect probabilities it creates to track the IP
addresses which are associated with IDs found until patterns emerge.

Essentially, the attacker will have to record the address found when removing the
factor from every message and track if any IP addresses are associated with them.
Given the high collision rate and the regular ID rotation, they will find most addresses
in the set have IP addresses associated and will have to execute the attack many
times to find IP addresses which are more common than those found by random
chance. They may be able to boost the success of this attack by giving more priority
to IPs from converted addresses where the initial address was unknown.

Client Impact of Address Collisions
Having addresses in a small space impacts message pickup because you can have
users using the same Identity. As long as the number of collisions is not too high, the
extra bandwidth is not significant and the collisions add IP address ambiguity,
further hampering adversarial attacks.

To model the average number of collisions on an address, one would find the mean
of the binomial distribution of collisions for that address. This would be the mean of a
binomial distribution:

𝑝
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

= 𝑃(𝑥; 𝑛 = 𝑅, 𝑝 = 1/𝐴)

Given that the equation for the mean of a binomial distribution is:

𝑀𝑒𝑎𝑛 = 𝑛𝑝

The average number of collisions can be calculated as:

𝐴𝑣𝑔 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 = 𝑅/𝐴 = 𝑅/2
𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔

2
𝑅)

Like the rate of collisions between users, this will be a repetitive and repeats every 2n

< R < 2n+1

Therefore we can just analyze a single region to understand the probabilities. The
probabilities in a single region can be calculated with the the following python code:

import math

//check values between 2^10 and 2^11
i = 1025

while i<2047:
a = 2**math.floor(math.log(i)/math.log(2))
mean = i/a
print(f'{i}, {mean}')

i= i+10

From this we can see that the average number of users using a lot varies between 1
and 2.

It is also important to understand how frequently many more collisions will take
place. The standard deviation of a binomial distribution can be calculated as:

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑝(1 − 𝑝) = 𝑅2
−𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔

2
𝑅)

(1 − 2
−𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔

2
𝑅)

)

import math

//check values between 2^10 and 2^11
i = 1025

while i<2047:
a = 2**math.floor(math.log(i)/math.log(2))
stDev = math.sqrt(i* 1/a * (1-1/a))
print(f'{i}, {stDev}')
i= i+10

This leads to standard deviations ranging from 1 to 1.4. Overall, this means that
collisions with a very large number of clients will be rare.

Selecting R
Due to the obfuscation through collisions this approach adds to the network, it is not
possible to directly measure R. Due to gossips, it is possible to measure a different
related value, Addresses utilized (AU). This is a measurement of how many addresses
are utilized by the network over a given period of time. In a simple approach where
all addresses rotate together, the AU can be approximated via:

𝐴
𝑈

≃ 𝑅 × 𝑀𝑒𝑎𝑛 = 𝑅 × 𝑅/𝐴

Where A is the current address size

Using simple algebra, we can then calculate R:

𝑅 ≃ 𝐴
𝑈

𝐴

The problem with this result is that clients do not all rotate their reception identities
at a set time. Assuming identities rotate at a period p, and usage rates are constant
across the period, it can be found that only 75% of identities are valid3, with 25
percent being duplicates, making the equation:

𝑅 ≃ 0. 75𝐴
𝑈

𝐴

Varying R
The number of active Recipients on the network (R) will be constantly changing
dependent on usage. It is impossible to constantly vary the address space A as R
varies. As a result, two conclusions can be drawn:

● The period p must be selected such that the utilization of the server does not
vary by more than a factor of 2 between subsequent periods. A
recommended p is 24 hours.

● The rate that the address space changes must be much much greater than p

A mechanism to determine the number of true recipients has not been designed
yet, but will be dependent on heuristic properties of platform usage. A heuristic
approach could be based upon the rate of message collision across a sample of
clients.

Modifying the cMix packet
The cMix packet always has the 1st bit, and the 4097th bit as 0 in order to ensure the
2 sub payloads are within the cyclic group. This means that if you randomly mutate
the payloads (as you do in a tagging attack) there is only a 25% chance both will
come out as 0, making it indistinguishable from a well formed payload. This needs to
be fixed by modifying the spec to make those 2 bits 1 or 0.

3 This can be found by integrating over the period the percentage of the use of IDs which are
unique to the period

Implementation

Network Identities
Within the cmix system as implemented, there is a defined ID structure:

The types are as follows:

Type Number Description

Generic 0x00 Components which do not fit with other classifications.
Example: Permissioning Server

Node 0x01 Nodes within the network

Gateway 0x02 Gateways within the network. Will always have the same
value as its associated node

User 0x03 A user in the network

The value component of the ID is the blake2B hash of an RSA public key and a 256
bit salt

𝑣𝑎𝑙𝑢𝑒 = ℎ𝑎𝑠ℎ(𝑝𝑢𝑏𝐾𝑒𝑦, 𝑠𝑎𝑙𝑡)

This allows IDs to be independently generated by entities and for ownership to be
proved via a challenge response protocol where an entity is asked to sign a newly
generated random number.

Ephemeral Recipient Identities
Ephemeral Recipient IDs in the network will be generated from a Recipient ID. When
a user joins the network they will register two identities, a Transmission ID and a
Recipient ID. They will only communicate with nodes via their Transmission IDs and
will identify themselves to users in the network via their Recipient IDs. From a

recipient ID, an Ephemeral recipient ID will be generated through the use of network
identity size s, rotating at a set period p, with a phase offset o.

A recipient ID will be calculated as:

𝐸𝑝ℎ𝑒𝑚𝑒𝑟𝑎𝑙 𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡 𝐼𝐷 = ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝐼𝐷), 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑎𝑙𝑡)[0: 𝑠]

The phase offset o will be:

𝑜 =ℎ𝑎𝑠ℎ(𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝐼𝐷)%𝑛𝑢𝑚𝑂𝑓𝑓𝑠𝑒𝑡𝑠
Where num offsets is a predefined network constant describing the number of
different change points. A recommended value for a p of 1 day is 2^16.

The rotation salt will be dependent on the current timestamp:

The phase of the timestamp will be computed at:

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑃ℎ𝑎𝑠𝑒 = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝%𝑝
If the Timestamp Phase is less than phase offset o, then the rotation salt used will be:

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑙𝑡 = 𝑓𝑙𝑜𝑜𝑟((𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑝)/𝑝)
otherwise

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑙𝑡 = 𝑓𝑙𝑜𝑜𝑟(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝/𝑝)
Will be used.

A double hash of the RecipientID is used so the intermediary hash can be provided
to third parties to track when you collide without providing them the information
needed to evaluate Identity Fingerprints (see below). This can support notification
systems with comparatively weak privacy properties.

Ephemeral ID Structure
The maximum size that Ephemeral IDs can grow to is 264, giving support for up to
264-1 simultaneous users. Within messages, the entire 64 bit space will be used in the
message structure, with the unused bits being filled with random data. When
gossiped or stored, the unused bits will all be 0.

Identity Fingerprints
Because messages will be received from other users, an easy mechanism for
determining which user a message is intended for will simplify the process of
filtering incoming messages.

Due to the fact that the recipient ID is known by parties the client is communicating
with, they can use that as a secret in a fingerprint:

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 = ℎ𝑎𝑠ℎ(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑃𝑎𝑦𝑙𝑜𝑎𝑑, 𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝐼𝐷)

Appendix

Group Open Optimizations
The solution to ensuring the last node cannot hide the attack in cMix paper requires
n × b (number of nodes × batch size) real time exponentiations to perform. This can
instead be optimized to require no real time exponentiations by adding an extra
unpermuted phase of cmix and sharing the keys outright with the last node after
they commit to the intermediary output. This can be further optimized by
generating all keys from a seed and only sharing the seed. Furthermore, due to the
fact that every node is doing the operation, the number of real time multiplication
can be reduced by only adding factors to some slots, say 1/ ok an,

